A Video Self-descriptor Based on Sparse Trajectory Clustering

نویسندگان

  • Ana Mara De Oliveira Figueiredo
  • Marcelo Caniato Renhe
  • Virgínia Fernandes Mota
  • Rodrigo Luis de Souza da Silva
  • Marcelo Bernardes Vieira
چکیده

In order to describe the main movement of the video a new motion descriptor is proposed in this work. We combine two methods for estimating the motion between frames: block matching and brightness gradient of image. In this work we use a variable size block matching algorithm to extract displacement vectors as a motion information. The cross product between the block matching vector and the gradient is used to obtain the displacement vectors. These vectors are computed in a frame sequence, obtaining the block trajectory which contains the temporal information. The block matching vectors are also used to cluster the sparse trajectories according to their shape. The proposed method computes this information to obtain orientation tensors and to generate the final descriptor. The global tensor descriptor is evaluated by classification of KTH, UCF11 and Hollywood2 video datasets with a non-linear SVM classifier. Results indicate that our sparse trajectories method is competitive in comparison to the well known dense trajectories approach, using orientation tensors, besides requiring less computational effort.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor

Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...

متن کامل

A Video Descriptor Using Orientation Tensors and Shape-Based Trajectory Clustering

Dense trajectories have been shown as a very promising method in the human action recognition field. In this paper, we propose a new kind of video descriptor, generated from the relationship between the trajectory’s optical flow with the gradient field in its neighborhood. Orientation tensors are used to accumulate relevant information over the video, representing the tendency of direction in t...

متن کامل

Action recognition using length-variable edge trajectory and spatio-temporal motion skeleton descriptor

Representing the features of different types of human action in unconstrained videos is a challenging task due to camera motion, cluttered background, and occlusions. This paper aims to obtain effective and compact action representation with length-variable edge trajectory (LV-ET) and spatio-temporal motion skeleton (STMS). First, in order to better describe the long-term motion information for...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016